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ABSTRACT

Large-Area Electronics (LAE) technology has enabled the develop-
ment of physically-expansive sensing systems with a flexible form-
factor, including large-aperture microphone arrays. We propose an
approach to blind source separation based on leveraging such an ar-
ray. In our algorithm we carry out delay-sum beamforming, but use
frequency-dependent time delays, making it well-suited for a practi-
cal reverberant room. This is followed by a binary mask stage for
further interference cancellation. A key feature is that it is fully
“blind”, since it requires no prior information about the location of
the speakers or microphones. Instead, we carry out k-means cluster
analysis, to estimate time delays in the background from acquired
audio signals that represent the mixture of simultaneous sources. We
have tested this algorithm in a conference room (T60 = 350 ms), us-
ing two linear arrays consisting of: (1) commercial electret capsules,
and (2) LAE microphones, fabricated in-house. We have achieved
high-quality separation results, obtaining a mean PESQ MOS im-
provement (relative to the unprocessed signal) for the electret array
of 0.7 for two sources and 0.6 for four simultaneous sources, and for
the LAE array of 0.5 and 0.3, respectively.

Index Terms— BSS, microphone array, beamforming, source
separation, LAE, reverberant room, large-area electronics.

1. INTRODUCTION

Large-area electronics (LAE) is a technology that provides a
platform to build sensor systems that can be distributed over a
physically-expansive space, while also supporting a wallpaper form
factor [1]. This makes possible systems that can be seamlessly
integrated into our everyday environment, enabling collaborative
spaces that enhance interpersonal interactions. One example is an
LAE microphone array we have demonstrated [2], that uses thin-
film piezoelectric transducers for sensing sound and acquires audio
recordings using a custom CMOS readout IC. Such a system en-
ables new possibilities for wide-scale deployment in noisy rooms,
where multiple humans are speaking simultaneously. Using the
spatially-distributed microphones, individual voice commands can
be separated to enable collaborative human-computer interfaces.
The aim of this work is to develop algorithms that accomplish voice
separation in a practical room with practical speakers, who may
change their location during the course of use.

When developing an algorithm for isolating different sources in
a practical room, known as the blind source separation (BSS) prob-
lem, one of the principal challenges is the unpredictability of the
acoustic path. Not only is the path affected by reverberations with
surfaces and objects in the room, but human sources can move. To
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solve BSS one approach is beamforming, which leverages the spa-
tial filtering capability of a microphone array to isolate sources. Un-
fortunately, classical delay-sum beamforming is not well-suited to
a practical room. This is because it uses pre-defined time delays
that are independent of frequency between the microphones, with
the aim of constructively adding the signal from a target source and
destructively adding the signals from all interfering sources [3]. An
alternative approach to BSS is to use algorithms based on a fre-
quency domain implementation of independent component analysis
(ICA), which typically exploit statistical independencies of the sig-
nals [4]. However, there are concerns about the robustness of these
algorithms, especially in a reverberant room. This is due to the inher-
ent permutation ambiguity of this approach, where after separation
independently at each frequency, the components must further be as-
signed to the correct source. This necessitates an additional decision
step [5].

Weinstein et al. [6] were able to isolate speech signals using con-
ventional delay-sum beamforming, but had to utilize an array with
over 1000 microphones to obtain acceptable results. Levi et al. con-
tinued to use conventional delay-sum beamforming, but incorporated
a spectral subtraction step based on SRP-PHAT after beamforming,
enabling an array with just 16 microphones [7]. Unfortunately, this
approach is not blind, since it requires the location of the sources and
microphones.

In this work we propose and demonstrate a beamforming-based
algorithm for BSS, with the following main contributions:

1. We also use delay-sum beamforming, but unlike prior work we
do not use a single time delay across all frequencies for a given
microphone-source pair. Rather we use frequency dependent time
delays. This is needed since reverberations from the surfaces in
a practical room lead to multipath propagation, for which a linear
phase model is inadequate [8].

2. We crucially differ from other beamforming attempts by being
blind, requiring no prior information about the location of the
sources or microphones. The only information our algorithm
needs about the environment is the number of sources. Thus, we
avoid time consuming and technically challenging location mea-
surements [9]. Furthermore, we make no assumptions about the
propagation of sound in a room. Rather, we extract time delays for
each microphone-source pair on the fly from the sound mixture
of simultaneous sources. This enables our algorithm to adapt to
the unique acoustic properties of each room (e.g., size, reverber-
ation time, placement of objects) and a change in location of the
sources. We use k-means clustering, an unsupervised classifica-
tion technique, to identify a short (64 ms) frame at the beginning
of the sound mixture in which only a single source is prominent,
making such a frame well-suited for time delay extraction.

3. We apply our algorithm to experimental data from two adjacent
linear arrays, measured in a conference room: (1) an array of
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Fig. 1. Block diagram of our proposed algorithm.

commercial electret capsules, and (2) an array or LAE micro-
phones, which are fabricated in-house [2]. The LAE microphones
have non-idealities (e.g. non-flat frequency response, large vari-
ation across elements) compared to electret microphones, which
arise due to fabrication in a large-area, thin, and flexible form fac-
tor. For both arrays we achieved high-quality separation results.
Our algorithm outperformed simple beamforming and was com-
petitive with Independent Vector Analysis (IVA) BSS, a modern
frequency-domain ICA-based algorithm [10], while avoiding the
associated permutation problem.

2. ALGORITHM

Figure 1 shows the block diagram of the proposed algorithm. The
beamforming stage receives the convoluted mixture from all the
sources in the room and carries out delay-sum beamforming with
frequency-dependent time delays. These are provided by the k-
means Time-Delay Estimator, wherein an optimal segment for esti-
mation is first identified. To further cancel out interfering sources,
the beamformer is followed by a binary mask stage.

2.1. Problem Setup

The array consists ofM microphones, which separateS simultane-
ous sound sources,xs(t). The sound recorded by each microphone,
ym(t), is determined by the room impulse,hms(t), between each
source and microphone:

ym(t) =

S∑

s=1

xs(t) ∗ hms(t). (1)

We designate one of the microphone channels as a reference,ref ,
and express the signal recorded in the time-frequency domain at this
reference microphone, for frequencyω and frameL as:

Yref (ω, L) =
S∑

s=1

Xs(ω, L)|Href s(ω)|ejωTref s(ω) (2)

where
Href s(ω) = |Href s(ω)|ejωTref s(ω) (3)

is the room impulse response in the frequency domain, andTref s(ω)
is the time delay between the reference microphone and a source
s. Our objective is to recover each sources at the reference micro-
phone, as if it were recorded with the other sources muted:

Xs
ref (ω, L) = Xs(ω, L)|Href s(ω)|ejωTref s(ω). (4)

2.2. Beamforming with Frequency Dependent Time Delays

The first step of our algorithm is delay-sum beamforming. During
this step, for a given source we time align all microphone signals

with respect to the reference microphone and sum them:

X̂ ′
s

ref (ω, L) =
M∑

m=1

Ym(ω, L)e−jωDms(ω) (5)

whereDms(ω) is the time delay between the reference and each
microphone. In this way we constructively sum the contributions
from the source we want recover over all microphones, and attenuate
the other sources though destructive interference.

In classical delay-sum beamforming,Dms is treated as a con-
stant, frequency-invariant value, such as found in anechoic condi-
tions [3]. Instead, this implementation takes into account multipath
propagation of sound in a reverberant room, which has the effect of
randomizing the phase spectrum of the room impulse response [8].

2.3. Binary Mask

To further suppress interfering sound sources, a binary mask,
Ms(ω, L), is applied to the output of the delay-sum beamformer:

X̂s
ref (ω, L) = X̂ ′

s

ref (ω, L)Ms(ω, L). (6)

When constructing a binary mask, frequency bins are assigned a
value of 1 if they meet the following criterion, otherwise they are
assigned a value of 0:

|̂X ′
s

ref (ω, L)|

max(|X̂ ′
1

ref (ω, L)|, |̂X ′
2

ref (ω, L)|, ∙ ∙ ∙ , |̂X ′
S

ref (ω, L)|)
> α

(7)
whereα is a constant threshold value that is experimentally tuned.
After applying the binary mask, the inverse FFT is taken of each
frame to recover the time domain signal, and successive frames are
concatenated using the standard Overlap-Add method.

2.4. Time Delay Estimates Based on k-Means Clustering

Time delays between the reference and other microphones, can be
estimated by making each source play a test sound one-by-one in
isolation. A frame from the test sound, such as speech or white noise
with the desired spectral content, can be used to find the time delays:

Dms(ω) = Tm s(ω, L) − Tref s(ω, L) =

1

2πf
( 6 Xs

m(ω, L) − 6 Xs
ref (ω, L)) =

φm(ω, L)

2πf
(8)

wheref is the frequency and6 Xs
m(ω, L) is the phase of a frame

from the desired source recorded at microphonem.
We replace this calibration procedure by estimating the time de-

lays directly from the signal when all sources are playing simultane-
ously. We are able to achieve this by using a standard implementa-
tion of k-means clustering based on euclidean distance [11]. We set
the number of clusters,k, to be equal to the number of sources,S.
A feature vector is extracted for each frame, which consists of the
phase difference,φm′(ω, L), between a given microphone,m′, and
the reference at theN frequencies of interest:

φm′(ω, L) = [θω1, θω2, ∙ ∙ ∙ , θωN ] (9)

with θ taken to be in the range[0, 2π).
Our intent is not just to classify each frame as belonging to a

given source, since many frames have spectral content from multiple
sources, which would lead to poor time delay estimates. Rather we
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Fig. 3. Microphone sensitivity measured in an anechoic chamber.
(a) Omnidirectional electret microphone, (b) LAE microphone.

want to identify the best possible frame from which to derive the
time delays. To identify these frames we calculate the silhouette
[12], s(L), for every feature vector, and choose the frame with the
highest value:

s(L) =
b(L) − a(L)

max(b(L), a(L))
(10)

wherea(L) is the mean distance between the feature vector from the
frame with index L and all other feature vectors assigned to the same
cluster. Then, the mean distances to the feature vectors correspond-
ing to all other clusters are also calculated, and the minimum among
these is designated asb(L). The value ofs(L) is bounded between
[−1, 1], and a larger value indicates it is more likely a feature vector
has been assigned to an appropriate cluster.

3. EXPERIMENTAL RESULTS

3.1. Setup Conditions

Experiments were carried out in a conference room, as shown in
Figure 2, playing both two (B and C) and four (A, B, C and D) si-
multaneous sound sources from a loudspeaker (Altec ACS90). Table
1 has a summary of experimental conditions. The two linear arrays
were mounted horizontally, with a PVDF microphone approximately
3 cm above a corresponding electret microphone; thus, allowing us
to directly compare the performance of the two arrays. Each ar-
ray used different elements: (1) Commercial omnidirectional elec-
tret capsules (Primo Microphone EM-172); (2) LAE microphones,
which are based on a flexible piezoelectric polymer, PVDF, and are
fabricated in-house. Figure 3 shows the frequency response of both
types of microphones, including the non-idealities of LAE micro-
phones arising due to the fabrication methods which lead to their
large-area, thin, and flexible form factor e.g. reduced sensitivity, a
non-flat response and large variations across elements.

To assess the performance of our algorithm we used two metrics:
(1) Signal-to-Interferer Ratio (SIR) calculated with theBSS Eval
Toolbox [14] [15]; (2) PESQ using the clean recording from the TSP

Number of Sources S = 2 (B,C) and S = 4 (A, B, C,D)
Number of Micr ophones M = 16
Microphone Pitch 15 cm (total array width = 2.25m).

SourceSignals
12 Harvard sentences from the
TSP database[13] (Duration = 30s).

SamplingRate 16kHz
Reverberation Times T60 = 350ms
Window Type Hamming
STFT Length 1024 samples (64ms)
STFT Frame Shift 256 samples (16ms)
Reference Microphone Located at center of linear array.
Threshold for Binary Mask α = 1.4 (see Equation7).

Table 1. Experimental and Signal Processing Parameters
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Fig. 4. SIR for time delays extracted from different frames versus
the silhouette of the frame for two sources (a)Source B (b)Source C.

database [13] as the reference signal. PESQ mean opinion scores
(MOS) range from -0.5 (bad) to 4.5 (excellent) [16].

3.2. Time Delay Estimator Performance

We compared the performance of our algorithm using time delays
extracted under two conditions: (1) White Gaussian noise, which
was played by each speaker one-at-a-time, before the simultaneous
recording, and (2) from a single frame of simultaneous speech that
was selected by our k-means-based silhouette criterion. It should be
noted that to improve the estimate when extracting the time delays
from white noise, the phase difference in Equation 8 consisted of the
circular mean [17] calculated from 50 successive frames.

To identify the best frames for time delay extraction, we imple-
mented k-means with 312 features vectors. Each feature vector was
extracted from a different frame (frame length = 64 ms, frame shift
=16 ms) taken from the first 5 s of the recording with the simultane-
ous sources. We used a total of 160 features, corresponding to the
phase difference between the closest adjacent microphone and the
reference microphone for each frequency bin between 500 Hz and
3000 Hz.

After k-means, the silhouette was calculated for all 312 feature
vectors in order to select a feature vector per source for extracting
time delays. Figure 4 validates the use of the silhouette as a metric
for selecting a frame to use for time-delay extraction (calculated after
the beamforming stage, using time delays extracted from the feature
vector, for two simultaneous sources). Figure 5 shows a compari-
son, for two representative microphones in the array, of the phase
delays estimated using white noise played in isolation versus those
estimated from frames selected based on the silhouette. Good agree-
ment is observed. Below we also compare the performance of our
algorithm when using time delays from white noise and k-means. In
most experiments there is only a small performance degradation for
k-means, highlighting its effectiveness for enabling BSS.

3.3. Overall Algorithm Performance

A lower limit on performance is given by calculating the SIR and
PESQ at the reference microphone before any signal processing. An
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Fig. 6. Separating two sources with an array of electret microphones.
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Fig. 7. Separating two sources with an array of LAE microphones.

upper limit is given by the PESQ at the reference microphone when
only a single source is playing, using as a reference signal the clean
anechoic recording that was inputted into the loudspeaker. In Figures
6 to 9, we show that for all configurations our algorithm successfully
enhances speech, significantly increasing both SIR and PESQ. It also
shows how our algorithm, combining beamforming followed by a
binary mask, outperforms using only the beamforming stage.

To compare the performance of our algorithm with a modern,
conventional BSS algorithm, we chose IVA BSS [10]. When using
the minimum number of microphones for IVA BSS (2 microphones
for 2 sources, 4 microphones for 4 sources) our algorithm (using
the entire 16 microphone array) outperforms by a wide margin. On
the other hand when when using IVA BSS with the entire array and
selecting the best channels from the 16 separated channels it out-
putted, IVA BSS and our algorithm perform at a similar level. For
two sources IVA BSS performs slightly better than our algorithm,
but for four sources it sometimes fails to significantly enhance cer-
tain sources.

In Figure 6, when using two sources and the array with electret
capsules, the PESQ is nearly the same as the upper limit (e.g. the
sound played in isolation at the reference microphone), highlighting
the effectiveness of our proposed algorithm. A mean PESQ improve-
ment of 0.7 is obtained when comparing the blind algorithm (with
k-means delays) to the unprocessed signal. In Figure 7, we repeat
the same experiment with the LAE microphone array and find that
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Fig. 8. Separating four sources with an array of electret microphones
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Fig. 9. Separating four sources with an array of LAE microphones.

the PESQ of the upper limit is lower, due to the reduced performance
of the LAE microphones. In this case the PESQ from white noise is
close to the upper limit, while the PESQ from k-means is lower. This
suggests that the reduced sensitivity of the LAE microphones causes
the time delay estimates, extracted from the mix with simultaneous
sources, to degrade. Nevertheless, a mean PESQ improvement of
0.5 is still obtained.

In Figure 8, we test the electret microphone array with four
sources. The PESQ scores of our algorithm are no longer as close to
the upper limit, due to the initial lower PESQ and SIR of most of the
unprocessed signals. Nevertheless, speech is significantly enhanced,
with a mean PESQ MOS improvement of 0.6. In Figure 9, we repeat
the same experiment with the LAE microphone array and find the
algorithm shows a larger degradation, with a mean PESQ improve-
ment of 0.3. These results demonstrate how our algorithm can still
provide improvements in speech quality even in settings where the
unprocessed input signal has been severely degraded, due to non-
ideal microphones and low initial SIR values.

4. CONCLUSION

We develop a beamforming algorithm for blind source separation us-
ing a large-aperture microphone array. The algorithm estimates time
delays between each source and microphone from the sound mixture
of simultaneous sources, by using k-means cluster analysis to iden-
tify suitable frames for the estimate. This enables our algorithm to be
“blind”, since we do not require the location of the microphones and
sources, and can adapt to the acoustic properties of each room and
a change in location of the sources. We tested the algorithm using
both commercial electret and LAE microphone arrays, with two and
four simultaneous sources, and in all cases we obtained significant
improvements in speech quality, as measured with PESQ and SIR.
These improvements, combined with the simplicity of our algorithm,
makes it a strong potential candidate for a real-time implementation
for an embedded system.
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